Catalog
二叉搜索树的相关操作
#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode {
ElementType Data;
BinTree Left;
BinTree Right;
};

void PreorderTraversal(BinTree BT);
void InorderTraversal(BinTree BT);

BinTree Insert(BinTree BST, ElementType X);
BinTree Delete(BinTree BST, ElementType X);
Position Find(BinTree BST, ElementType X);
Position FindMin(BinTree BST);
Position FindMax(BinTree BST);

int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;

BST = NULL;
scanf("%d", &N);
for (i = 0; i < N; i++) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for (i = 0; i < N; i++) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp == MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp == MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for (i = 0; i < N; i++) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");

return 0;
}

BinTree Insert(BinTree BST, ElementType x)
{
if (!BST) {
BST =(BinTree)malloc(sizeof(struct TNode));
BST->Data = x;
BST->Left = BST->Right = NULL;
}
if (BST->Data < x) BST->Right = Insert(BST->Right, x);
if (BST->Data > x) BST->Left = Insert(BST->Left, x);
return BST;
}

BinTree Delete(BinTree BST, ElementType x)
{
if (!BST) {
printf("Not Found\n");
}
else {
if (x < BST->Data) BST->Left = Delete(BST->Left, x);
else if (x > BST->Data) BST->Right = Delete(BST->Right, x);
else if (x == BST->Data) {
if (BST->Left && BST->Right) {
BinTree t = FindMin(BST->Right);
BST->Data = t->Data;
BST->Right = Delete(BST->Right, BST->Data);
}
else {

if (!BST->Left)BST = BST->Right;
else if (!BST->Right)BST = BST->Left;
}
}
}
return BST;
}

Position Find(BinTree BST, ElementType X) {
if (BST == NULL)
return NULL;
if (BST->Data == X)
return BST;
else if (X < BST->Data) return Find(BST ->Left,X);
else if (X > BST->Data) return Find(BST ->Right, X);
return BST;
}
Position FindMin(BinTree BST) {
if (BST) {
if (BST->Left) return FindMin(BST->Left);
else return BST;
}
}
Position FindMax(BinTree BST) {
if (BST) {
if (BST->Right) return FindMax(BST->Right);
else return BST;
}
}

void InorderTraversal(BinTree BT) {
//常规中续遍历
if (BT == NULL)
return;
InorderTraversal(BT->Left);
printf(" %d", BT->Data);
InorderTraversal(BT->Right);

}
void PreorderTraversal(BinTree BT) {
if (BT == NULL)
return;
printf(" %d", BT->Data);
PreorderTraversal(BT->Left);
PreorderTraversal(BT->Right);
}

下附运行结果

Author: superzhaoyang
Link: http://yoursite.com/2019/12/11/二叉搜索树的相关操作-1/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Donate
  • 微信
  • 支付宝

Comment